CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival.
نویسندگان
چکیده
CX(3)CR1 is a chemokine receptor with a single ligand, the membrane-tethered chemokine CX(3)CL1 (fractalkine). All blood monocytes express CX(3)CR1, but its levels differ between the main 2 subsets, with human CD16(+) and murine Gr1(low) monocytes being CX(3)CR1(hi). Here, we report that absence of either CX(3)CR1 or CX(3)CL1 results in a significant reduction of Gr1(low) blood monocyte levels under both steady-state and inflammatory conditions. Introduction of a Bcl2 transgene restored the wild-type phenotype, suggesting that the CX(3)C axis provides an essential survival signal. Supporting this notion, we show that CX(3)CL1 specifically rescues cultured human monocytes from induced cell death. Human CX(3)CR1 gene polymorphisms are risk factors for atherosclerosis and mice deficient for the CX(3)C receptor or ligand are relatively protected from atherosclerosis development. However, the mechanistic role of CX(3)CR1 in atherogenesis remains unclear. Here, we show that enforced survival of monocytes and plaque-resident phagocytes, including foam cells, restored atherogenesis in CX(3)CR1-deficent mice. The fact that CX(3)CL1-CX(3)CR1 interactions confer an essential survival signal, whose absence leads to increased death of monocytes and/or foam cells, might provide a mechanistic explanation for the role of the CX(3)C chemokine family in atherogenesis.
منابع مشابه
VASCULAR BIOLOGY CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival
CX3CR1 is a chemokine receptor with a single ligand, the membrane-tethered chemokine CX3CL1 (fractalkine). All blood monocytes express CX3CR1, but its levels differ between the main 2 subsets, with human CD16 and murine Gr1low monocytes being CX3CR1. Here, we report that absence of either CX3CR1 or CX3CL1 results in a significant reduction of Gr1low blood monocyte levels under both steady-state...
متن کاملFractalkine Promotes Human Monocyte Survival via a Reduction in Oxidative Stress
OBJECTIVE The CX3C chemokine fractalkine (CX3CL1) has a critical role in the development of atherogenesis because apolipoprotein-E-deficient mice lacking CX3CL1 or its receptor CX3CR1 develop smaller plaques and polymorphisms in CX3CR1 are associated with altered risk of cardiovascular disease. CX3CR1 is found on numerous cell types involved in atherogenesis but seems to have a key role in mono...
متن کاملThe homozygous CX3CR1-M280 mutation impairs human monocyte survival.
Several reports have demonstrated that mouse Cx3cr1 signaling promotes monocyte/macrophage survival. In agreement, we previously found that, in a mouse model of systemic candidiasis, genetic deficiency of Cx3cr1 resulted in increased mortality and impaired tissue fungal clearance associated with decreased macrophage survival. We translated this finding by showing that the dysfunctional CX3CR1 v...
متن کاملFractalkine Is Expressed in Early and Advanced Atherosclerotic Lesions and Supports Monocyte Recruitment via CX3CR1
Fractalkine (CX3CL1, FKN) is expressed in the inflamed vascular wall and absence of FKN reduces atherogenesis. Whether FKN is expressed throughout all stages of atherosclerotic disease and whether it directly contributes to monocyte recruitment to atherosclerotic lesions is not known. We collected human atherosclerotic plaque material and blood samples from patients with carotid artery disease ...
متن کاملLoss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis
The most abundant populations of non-neoplastic cells in the glioblastoma (GBM) microenvironment are resident microglia, macrophages and infiltrating monocytes from the blood circulation. The mechanisms by which monocytes infiltrate into GBM, their fate following infiltration, and their role in GBM growth are not known. Here we tested the hypothesis that loss of the fractalkine receptor CX3CR1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 113 4 شماره
صفحات -
تاریخ انتشار 2009